A CCD image sensor on a flexible circuit board
CCD vs CMOS
Today, most digital still cameras use either a CCD image sensor or a CMOS sensor. Both types of sensor accomplish the same task of capturing light and converting it into electrical signals.
A CCD is an analog device. When light strikes the chip it is held as a small electrical charge in each photo sensor. The charges are converted to voltage one pixel at a time as they are read from the chip. Additional circuitry in the camera converts the voltage into digital information.
A CMOS chip is a type of active pixel sensor made using the CMOS semiconductor process. Extra circuitry next to each photo sensor converts the light energy to a voltage. Additional circuitry on the chip may be included to convert the voltage to digital data.
Neither technology has a clear advantage in image quality. CMOS can potentially be implemented with fewer components, use less power and/or provide faster readout than CCDs. CCD is a more mature technology and is in most respects the equal of CMOS. CMOS sensors are less expensive than the CCD sensors when it comes to manufacturing.
Another hybrid CCD/CMOS architecture, sold under the name "sCMOS", consists of CMOS readout integrated circuits (ROICs) that are bump bonded to a CCD imaging substrate – a technology that was developed for infrared focal plane arrays and now adapted to silicon-based detector technology. Another approach is to utilize the very fine dimensions available in modern CMOS technology to implement a CCD like structure entirely in CMOS technology. This can be achieved by separating individual poly-silcion gates by a very small gap. These hybrid sensors are still in the research phase, and can potentially harness the benefits of both the CCDs and the CMOS imagers
No comments:
Post a Comment